
toon2real: Translating Cartoon Images to Realistic Images

A thesis

Submitted in partial fulfillment of the requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

Submitted by

KM Arefeen Sultan 150104111
Md. Nahidul Islam 150104127
Sayed Hossain Khan 150104133
Labiba Kanij Rupty 150104147

Supervised by

Mohammad Imrul Jubair

Assistant Professor

Department of Computer Science and Engineering

Ahsanullah University of Science and Technology

.

Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Dhaka, Bangladesh

June 2019



CANDIDATES’ DECLARATION

We, hereby, declare that the thesis presented in this report is the outcome of the investi-

gation performed by us under the supervision of Mohammad Imrul Jubair, Assistant Pro-

fessor, Department of Computer Science and Engineering, Ahsanullah University of Science

and Technology, Dhaka, Bangladesh. The work was spread over two final year courses,

CSE4100: Project and Thesis-I and CSE4250: Project and Thesis-II, in accordance with the

course curriculum of the Department for the Bachelor of Science in Computer Science and

Engineering program.

It is also declared that neither this thesis nor any part thereof has been submitted anywhere

else for the award of any degree, diploma or other qualifications.

KM Arefeen Sultan

150104111

Md. Nahidul Islam

150104127

Sayed Hossain Khan

150104133

Labiba Kanij Rupty

150104147

i



CERTIFICATION

This thesis titled, “toon2real: Translating Cartoon Images to Realistic Images”, submit-

ted by the group as mentioned below has been accepted as satisfactory in partial fulfillment

of the requirements for the degree B.Sc. in Computer Science and Engineering in June 2019.

Group Members:

KM Arefeen Sultan 150104111
Md. Nahidul Islam 150104127
Sayed Hossain Khan 150104133
Labiba Kanij Rupty 150104147

Mohammad Imrul Jubair

Assistant Professor & Supervisor

Department of Computer Science and Engineering

Ahsanullah University of Science and Technology

Prof. Dr. Kazi A Kalpoma

Professor & Head

Department of Computer Science and Engineering

Ahsanullah University of Science and Technology

ii



ACKNOWLEDGEMENT

First and foremost, we are grateful to Almighty Allah for blessing us with the good health

and well being we required to work on this thesis.

Next, we are really thankful to our beloved supervisor, Mohammad Imrul Jubair, without

whose assistance we couldn’t have achieved what we have achieved so far. It was his moti-

vation and constant support that kept us going.

We also want to take this opportunity to express our gratitude to Prof. Dr. Kazi A. Kalpoma,

Head of the department and all other faculty members and staffs of the Department of CSE,

AUST, who have believed in us and helped and encouraged us in every possible way they

could.

We also want to thank the external examiners of our thesis, Md. Taksir Hasan Majumdar

and Mir Tafseer Nayeem, who scrutinized our work and showed us proper guideline.

Last but not least, we want to thank the people who made us come this far, our parents. We

want to thank them for always being there for us and guiding us.

Dhaka

June 2019

KM Arefeen Sultan

Md. Nahidul Islam

Sayed Hossain Khan

Labiba Kanij Rupty

iii



ABSTRACT

In terms of Image-to-image translation, Generative Adversarial Networks (GANs)

has achieved great success even when it is used in the unsupervised domain. In this

work, we aim to translate cartoon images to photorealistic manifold using GAN. We

apply several state-of-the-art models to perform this task; however, they fail to perform

good quality translations. We observe that shallow difference between these two do-

mains causes this issue. Based on this idea, we propose a method toon2real, based

on CycleGAN model for image translation from cartoon domain to photorealistic do-

main. To make our model efficient, we implemented Spectral Normalization which

added stability in our model. We demonstrate our experimental results and show that

our proposed model has achieved the lowest Fréchet Inception Distance score and better

results compared to other state-of-the-art techniques, such as UNIT. We also took help

of human evaluation system where our output were given 4.08 out of 5.
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Chapter 1

Introduction

1.1 Research Domain

Movies serve as one of the most popular sources of entertainment for human beings. Car-

toons, undeniably, held a large part of entertainment industry in this modern day world.

While watching them, a curiosity might be prompted in our mind: How enchanting it would

be to see our favourite cartoons become realistic? What if the adventure of Chihiro from ‘Sprited

Away (2001)’ is rendered in a real-life setup? Or the journey of Carl from ‘Up (2009)’?

We reckon the above fantasy crosses most of the cartoon lovers’ minds once in a while;

however, making this happen in reality is not an easy task. For instance, an upcoming movie

‘The Lion King (2019)’—remake of one of the most popular animated movies ‘The Lion King

(1994)’—costs four times the original one [5,6][See Figure 1.1]. The reason is that the new

movie is a live-action version of the animated one based on Computer-Generated Imagery

(CGI) which is a costly task to perform [7]. Moreover, the time and the labour required to

generate an image are also high.

In this paper, we consider the above subject as our research problem and we attempt to

propose a time & cost effective solution. We aim to input a cartoon image and to produce

its realistic version automatically. Hence, we present a technique called “toon2real”—a

Generative Adversarial Networks (GANs) [8] based approach—that translates cartoons to

realistic images. There has been some tremendous researches on image-to-image translation

using GANs such as [3, 9–12]; however, to our knowledge there hasn’t been any research

on generating realistic images from cartoon images yet. The closest research on translating

cartoon images to realistic images has been touched by Li etal [13]which only covers the face

generation part of the task. Besides, Tomei et al translates art images to realistic domain in

their work [14], where each object of an image from the cartoon is mapped with the same

objects from images of realistic domain. Moreover, the CartoonGAN [15]—a motivation
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(a) (b)

Figure 1.1: Here, we can see a scene of The Lion King(1994) along with the scene from The
Lion King(2019) which is made using CGI.

behind our work—converts real image to cartoon; performing contrariwise is not a solution

to our problem as the detail preservation from real to cartoon is not similar for vice versa.

Hence, translating cartoons to realistic images is much harder because the cartoon images

are smoothed out and their details are very trivial while compared to realistic images.

In this paper, we apply a technique which is based on CycleGAN [3] to achieve desired goal.

We demonstrate our results and, in addition, we compare it with the UNIT method used by

Liu et al [10].

In the next section, we will discuss more on how we came to take decision to work on

generating cartoon images from real images.

1.2 Motivation

Ever since Ian Goodfellow published his first paper on GAN [8], research on this field

has taken a huge spike. Since then, GANs have achieved great results in various image

generation tasks, which are image super-resolution [16], image-to-image translation [3],
[9], [4], text-to-image synthesis [17], [18] etc.

Among all, Image-to-Image translation has reached another dimension with the help of

GANs. There has been tremendous activies on this field. There have been various researches

which generate dogs from cats or man from woman[See 1.2]. Recently, a research on super

resolution paper has opened the door for recreating the once beloved games of 90s’ again

into high resolution game. From Figure. 1.3, we can see the example where images from

two old games are translated into higher resolution. Another research which has created
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a new kind of branch of GAN is Karras et al [2]. This paper works on generating realistic

human faces. It just not only works on that. It creates faces by merging faces from different

people. From Figure. 1.4, we can see that, a image of face is created by using three diffent

Figure 1.2: New women face are generated by learning from image distribution of Man
with glasses, man without glasess and woman without glasses. [1]

(a) (b)

(c) (d)

Figure 1.3: Low resolution old games are translated into high resolution images. Here,
Figure 1.3a is the old resulation game which is translated into high resolation version in
Figure 1.3b. Same is done for Figure 1.3c and Figure 1.3d respectively.
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images of face.

Figure 1.4: A new face is created by using three different faces. StyleGAN technique made
it possible. [2]

One of the first researches which translated unpaired images successfully was [3]. It uses

the technique of Cycle Consistency Loss. One of the main motivation of coming up with

our research was when we learned about CycleGAN and how amazing it is. Before the

research on it, image-to-image translation of unpaired images was out of reach. Later after

the research of cyclegan, there have been some tremendous researches going on this field.

Using the technique, there has been another paper which is focused on the technique of

generating Photo real images from cartoon images. This technique is uses an edge smooth-

ing filter to create sharp edges of cartoon from photo-real images. We can see examples of

real to cartoon translation of this paper from Figure. 1.5, where this technique is applied

for two different styles.

Learning about this paper has influenced us a great deal to work cartoon to real translation.

However, ours is not as straightforward as this one because — Cartoons have less details

than photo real images. So, while translating from real images to cartoon images, it doesn’t

bother the model for some lack of image detail. However, in our case, we need to translate

images of less details into images of high details, which makes our task difficult.

In the next section, we will discuss more on how we overcame the difficulties while trans-

lating cartoon images to photo real images.
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(a) Real-world image.
(b) Shinkai style transforma-
tion.

(c) Hayao style transforma-
tion.

Figure 1.5: CartoonGAN: This technique is applied on 2 images for 2 different style —
Shinkai and Hayao Style where (a) is input image and (b), (c) are their Shinikai and Hayao
version respectively.

1.3 Contribution

1.3.1 Training Necessaries

As we need large dataset to train generative adversarial networks along with atleast two

deep networks, it demands the need of heavy computation and heavy training time. So, to

train our model, we used Nvidia GeForce GTX 1060 with a dedicated ram of 6GB.

It took us almost 5 days to train CycleGAN model and 3 days to train UNIT model.

1.3.2 Dataset Development

Previously, pix2pix [19] model was used to learn a mapping from input to output images

using paired dataset. It used conditional adversarial network to transform images from one

domain to another. Also similar works were generating photos from sketches [20] or from
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semantic structures [21]. Though they generated great results, obtaining paired dataset

was arduous and time-consuming. So we used unpaired dataset for our thesis work.

As deep learning is data hungry, initially, for realistic domain, we scraped scenery images

from Flickr and many other sources which were tagged as scenery, sunrise, sunset, sea, sky &

beach and collected around 7K samples. Besides, for cartoon domain, we extracted images

from various Japanese anime movies. We extracted the scenery images from these movies

consisting of sunsets, sea, sky, trees etc. We excluded the frames which are darker to see,

and the first and last few frames—as the introductory and credits part tend to be textual in

a movie. After hand-picking the appropriate images, in order to approximate with the size

of the realistic domain, we collected images from more than 15 cartoon movies and clips,

consisting the genres of romance, spiritual, war, supernatural & science-fiction. For both the

domain, images were of 128× 128 dimension.

Figure 1.6: Paired training data on left and unpaired training data on right. Paired training
data consists of correspondence between x i and yi. For our thesis, we use unpaired training
dataset where there is no correspondence between two sets.

1.3.3 Approaches for our work

Our thesis consists of training 7k samples and finally, with that trained model, we transform

a cartoon image to a real world image domain. The steps we explored are described below

and shown in Fig 1.7.

• We use CycleGAN [3] for cartoon-to-real world image transformation.

• For weight normalization, we exploited Spectral Normalization technique introduced

by Miyato et al. [22].

• Finally we compared our work with another state-of-the-art model UNIT [4]. We show

that our work achieves better result than UNIT framework.
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Figure 1.7: Process model for our thesis. We provide an input(128× 128
image for the CycleGAN model. For the weight normalization technique we combine

spectral normalization. Finally the result images are compared with FID score and human
evaluation.

We published our work on International Conference on Innovation in Engineering and Tech-

nology(ICIET) 2018 as a poster paper. We also stood 1st runner-up in MindSparks ’19 for

poster presentation.
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1.4 Thesis Organization

In this research, we have explored the idea of generating photo-real images from cartoon

images and for that, we used methods such as UNIT, CycleGAN etc. We discussed about our

exploration in the following sequence:

• Firstly, in Chapter 2, we discuss briefly about GANs and its variations.

• Later, in Chapter 3, we discuss about our method of work and its sequence.

• In Chapter 4, we discuss about our results and compare it with other techniques. We

also evaluated our results in this section.

• Lastly, on Chapter 5, we take a look at our limitations and discuss about those. We

also discussed about what we are planning to do in future.

In the next chapter we start our study with the brief introduction of Generative Adversarial

Networks.
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Chapter 2

Background

In this chapter, we demonstrate the in-depth contents about GAN [8], CycleGAN [3], UNIT

[4] and CartoonGAN [15]. Finally we discuss about the spectral normalization technique

[22] we implemented in contrast with CycleGAN [3].

2.1 Generative Adversarial Network

Generative Adversarial Network(GANs) [8] has become a global phenomenon in deep learn-

ing algorithms. The algorithm uses two networks, Generators and Discriminators, in a mini-

max algorithm situation where both of them tries to outperform another in a significant task

e.g. image generation [1] [23], image editing [24], text2image [17], image inpainting [25],
image-to-image translation tasks [3] [19] etc.

Total Loss: Full objective of GAN function is:

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (2.1)

where Generator G tries to generate images, whereas discriminator D discriminates the

output whether it is fake or real. In the objective function, Generator tries to maximize the

value of D(G(z)) such that it can fool the discriminator,and thus the gap between real and

fake becomes minimum. The discriminator tries to maximize the term of [logD(x)] and for

the 2nd term of [log(1−D(G(z))], discriminator tries to minimize it to 0, which means that

the discriminator tries to recognize if the image is generated or real.
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Figure 2.1: High level representation of generative adversarial networks. G stands for gen-
erative network and D for discriminative. The generator tries to generate image from ran-
dom noise and the discriminator probes if the result image is true or fake? Both of them
continuously work together to assemble a real sample.

Algorithm 1 optimizes the equation of GAN function given in 2.1.

Algorithm 1: Minibatch stochastic gradient descent training of generative adversarial

nets. The number of steps to apply to the discriminator, k, is a hyperparameter. k = 1

is chosen.

1 for number of training iterations do

for k steps do

• Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior pg(z).

• Sample minibatch of m examples (x (1), ...x (m)) from data generating distribution

pdata(x).

• Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m
∑

i=1

[logD(x (i)) + log(1− D(G(z(i))))] (2.2)

end for

• Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior pg(z).

• Update the generator by descending its stochastic gradient:

∇θg

1
m

m
∑

i=1

log(1− D(G(z(i)))). (2.3)
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Figure 2.2: Generative adversarial networks are trained by continuously updating the dis-
criminative distribution (D, blue, dashed line) so that it discriminates between samples from
data (black, dotted line) px and from generative distribution pg(G) (green, solid line). The
lower horizontal line defines the domain from which z is sampled. The horizontal line above
is part of the domain x . (a) Let’s assume an adversarial pair near convergence: pg is sim-
ilar to pdata and discriminator D is a partially accurate classifier, initially. (b) In the inner
loop of the algorithm D is trained to discriminate samples from data. (c) After an update to
Generator G, gradient of discriminator D will reform G(z) to flow to portions that are more
likely to be classified as data. (d) After several steps of training, if G and D have enough
capacity, they will reach a point at which both cannot improve.

2.2 CartoonGAN

2.2.1 Adversarial loss

Like equation 2.1, adversarial loss is applied to both generative G and discriminative D

network. However, simply training the discriminator D won’t be enough to distinguish car-

toon images. Because cartoon images have clear edges, therefore an output image without

clearly reproduced edges is likely to confuse the discriminator trained with this loss.

So the author preprocessed the images of training data where sdata(e) = {ei|i = 1..M} ∈ E

by removing clear edges in Sdata(c), where C and E are the cartoon images and cartoon-

like images without clear edges, respectively. To make clear edges, first of all a canny edge

detector is applied to detect edge pixel. Secondly, the regions are dilated and finally a Gaus-

sian smoothing is applied in the dilated regions.

So the full adversarial loss can be defined as:

Ladv(G, D) = Eci∼sdata(c)[logD(ci)] +Ee j∼sdata(e)[log(1− D(e j)]+

Epk∼sdata(p)[log(1− D(G(pk)))].
(2.4)
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2.2.2 Content loss

Another loss is introduced in the paper known as content loss to preserve the semantic

content of the input image. This can also be represented as CycleGAN’s [3] cycle consistency

loss which is shown on the later sections. In CartoonGAN [15], the authors adopt the high-

level feature maps in VGG network [26] pre-trained by [27] which has shown good object

preservation. So the content loss is:

Lcon(G, D) = Epi
∼ sdata(p)[||V GGl(G(pi))− V GGl(pi)||1] (2.5)

where l refers to the feature maps of a specific VGG layer. The authors definied their content

loss using the l1 spare regularization of VGG feature maps between the input image and the

generated cartoon image.

2.3 CycleGAN

While many researchers have produced groundbreaking results such as [19] , [20], [21] on

image-to-image translation using paired data, there hasn’t been much successful research

using unpaired data. To resolve this case, CycleGAN [3] has played an influencial role

by presenting an approach which translates one image of domain X to another domain Y

without any paired training data. This translation is based on an assumption that if an

image, x i from domain X can generate a new image a new image yi of another domain Y ,

eventually, the generated image, yi can be mapped to X by generating a new image x̂ where

x i = x̂ . To sum up, if G is the generator which translates into domain Y and F is for the

next translation, we can write it as following -

G(x i) = yi, where x i ∈ X , yi ∈ Y (2.6)

F(yi) = x̂ , where x̂ ∈ X (2.7)

Let’s break down the ideas that were used to make it a successful research and discuss them

one by one.

2.3.1 Adversarial Loss

Previously, we have known about Goodfellow et al. [8] and how it has revolutionized the

future of AI. As mentioned in section 4.1, we know that GAN [8] architecture works are

based on Adversarial Loss which is just an extension of Binary Cross-Entropy Loss. However,
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in the case of CycleGAN [3], although Adversarial Loss has been used, Binary Cross Entropy

Loss is not used. The reason is more related to the training inconsistency of GAN [8]. From

Mao et al., it is known that using Least Squares Loss shows more stability in training for

CycleGAN [3] than using Binary Cross-Entropy Loss. So, equation of Adversarial loss turns

into the following equation, where c is an image from domain C and r from R:

For Generator G, LGadv
=

1
m

m
∑

i=1

(1− Dr(G(c)))
2

For Generator F, LFadv
=

1
m

m
∑

i=1

(1− Dc(F(r)))
2

Ladv =LGadv
+LFadv

(2.8)

However, using only Adversarial Loss is not enough to get the best result. This loss is under-

constraint as it only limits the output to be of a specific domain and fails to limit a closely

related output with respect to input. From fig 4.1, we can see its demonstration. The

researchers of CycleGAN [3] uses an addition loss Cycle Consistency Loss to limit the output

to be closely related to the input.

2.3.2 Cycle-Consistency Loss

The idea of Cycle Consistency goes way back. It is an idea of determining the transitivity of

two images where second image is the reconstruction of the first image. This transitivity

is here denoted as Loss in our case, where we use two Cycle Consistency Loss as Forward &

Backward Cycle Consistency Loss.

For our Cartoon-to-real translation, if image, c of domain C is to be translated into domain R,

through Generator G, there must be another Generator F to translate the newly translated

image G(c) into ĉ with a view to reconstructing c. From figure 4.3, if this Cycle Consis-

tency Loss is called Forward - Cycle Consistency Loss, the opposite is called Backward - Cycle

Consistency Loss. It is defined using the following equations -

Forward Consistenc y Loss,L f _c yc =
1
m

m
∑

i=1

(F(G(c))− c)

Backward Consistenc y Loss,Lb_c yc =
1
m

m
∑

i=1

(G(F(r))− r)

A question may arise on why using Cycle Consistency Loss solves the under-constraint issue.

The intuition is that for a general mapping of two images, Adversarial Loss is great. However,
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it won’t be able to specify the best image of the domain which should be mapped to the

first image. On the other hand, Cycle Consistency Loss can do this job. Let’s think of a

scenario, where someone wants to translate a garden image to Monet Painting using GAN.

To his surprise, he finds out that when used only Adversarial Loss, the machine translates

the garden image with a random monet painting, kind of like figure 4.1 and on the other

hand, when used Cycle Consistency Loss, it shows the same contents of the garden which

seems to be painted by Monet. After some time, he finds out that, as Cycle Consistency Loss

minimizes the reconstruction loss of the image, the machine is bound to choose an image

which is pretty similar to the garden image, as its loss must be the least. So, we can say

that, Cycle Consistency Loss binds the code to find out the best monet painting to be stylized.

Real Anime Pic

Dr

r̂ FG ĉc

ReconstructedReal

Generated Anime Pic

Figure 2.3: Architecture Of CycleGAN

Lc yc =L f _c yc +Lb_c yc (2.9)

Total Loss:

So, the total loss is -

L (G, F, Dc, Dr) =LGadv
+LFadv

+λLc yc
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where λ controls the relative importance of the two objectives.

2.4 UNIT

Researchers of UNIT [4] worked on an assumption known as shared latent space assump-

tion, where a pair of corresponding images in different domains can be mapped to a same

latent representation in a shared-latent space. The framework combined a variational au-

toencoder(VAE) [28] and generative adversarial network (GAN). The adversarial training

objective enforces the generator to transform corresponding images in two domains, while

the variational autoencoders(VAE) [28] make correlations between translated images with

input images in the respective domain.

2.4.1 VAE-GAN

Variational Autoencoders (VAEs) [28] is a generative model that encodes the input data. A

variational autoencoder consists of an encoder, a decoder, and a loss function. The Encoder,

E is a neural network that takes in the distribution and outputs a hidden representation

z that is usually of a much smaller dimension. The Decoder, D is another neural network

whose input is the hidden representation, z. The Decoder reconstructs the data using the

input vector.

The encoder-generator pair {E1, G1} constitutes a VAE for the domain X1 , termed VAE1. For

an input image x1 ∈ X1, the VAE1 first maps x1 to a code in a latent space Z via the encoder

E1 and then decodes a random-perturbed version of the code to reconstruct the input image

via the generator G1.

LVAE1
(E1, G1) = λ1K L(q1(z1| x1)||pη(z)) − λ2Ez1∼q1(z1| x1)[logpG1

(x1| z1)]. (2.10)

LVAE2
(E2, G2) = λ1K L(q2(z2| x2)||pη(z)) − λ2Ez2∼q2(z2| x2)[logpG2

(x2| z2)]. (2.11)

2.4.2 Cycle-Consistency

The shared-latent space assumption defines the cycle-consistency constraint in one way. The

authors used this constraint in their framework to further regularize the mapping between

unsupervised image-to-image translation.

A VAE-like objective function is used to model the cycle-consistency constraint, given in
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equation 2.12 and 2.13.

LCC1
(E1, G1, E2, G2) = λ3 K L(q1(z1| x1) || pη(z)) + λ3 K L(q2(z2|x1→2

1 )||pη(z))−

λ4Ez2∼q2(z2| x1→2
1 )[logpG1

(x1| z2)].
(2.12)

LCC2
(E2, G2, E1, G1) = λ3 K L(q2(z2| x2) || pη(z)) + λ3 K L(q1(z1|x2→1

2 )||pη(z))−

λ4Ez1∼q1(z1| x2→1
2 )[logpG2

(x2| z1)].
(2.13)

The negative log-likelihood term ensures that the translated image resembles the input and

the KL terms penalize the hidden representation z in the cycle consistency. The hyper-

parameters λ3 and λ4 control the weights of the two different objective terms.

Total Loss: Finally, from the previous subsections, all the learning problems of the VAE1,

VAE2, GAN1 and GAN2 are jointly solved in the equation 2.14.

L (E1, G1, D1, E2, G2, D2) = min
E1,E2,G1,G2

max
D1,D2

LVAE1
(E1, G1) + LGAN1

(E2, G1, D1) + LCC1
(E1, G1, E2, G2)

+LVAE2
(E2, G2) + LGAN2

(E1, G2, D2) + LCC2
(E2, G2, E1, G1).

(2.14)

2.5 Spectral Normalization

Spectral normalization [22] normalizes the spectral norm of the weight matrix W so that it

satisfies the Lipschitz constraint, σ(W ) = 1:

W̄SN :=W/σ(W ). (2.15)

In the paper implementation, the computation using SGD for updating weight W is cheaper

than the calculation of the forward and backward propagations on neural networks. Algo-
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rithm 2 refers to the algorithm used for spectral normalization to update weight W .

Algorithm 2: SGD with spectral normalization

• Initialize ũl ∈ Rdl for l = 1, ..., L with a random vector (sampled from isotropic

distribution).

• For each update and each layer l:

1. Apply power iteration method to an unnormalized weight W l:

ṽl ← (W l)T ũl/




(W l)T ũl







2 (2.16)

ũl ← (W l)ṽl/




(W l)T ṽl







2 (2.17)

2. Calculate W̃SN with the spectral norm:

W̃ l
SN (W

l) =W l/σ(W l), whereσ(W l) = ũT
l W l ṽl (2.18)

3. Update W l with SGD on mini-batch dataset DM with a learning rate α:

W l ←W l ← α∇W l l(W̃ l
SN(W

l), DM) (2.19)
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Chapter 3

Methodology

In this chapter, we discuss the different approaches we have accumulated for our model

toon2real.

3.1 Unpaired Image-to-Image Translation

As we had to use unpaired dataset, we used our idea on various unpaired image-to-image

translation technique which are discussed in the following subsections.

3.1.1 CycleGAN

CycleGAN is the state of the art algorithm which translates between domains without paired

examples. In our thesis, we exploit our work at the level of sets: we are given cartoon do-

main X and real world domain Y . We train a mapping G : X → Y so that the output,

ŷ = G(x). Adversarial training is used to classify ŷ apart from y . In theory, adversarial

training’s objective is to get an output distribution over ŷ such that the empirical distribu-

tion pdata(y) is matched. In order to do that, optimal generator G translates the domain X

to domain Ŷ such that it matches approximately to domain Y . However, adversarial training

is not enough to persuade G to translate, as there are infinite mappings to domain Y that

will result in same distribution. However if we do modify the adversarial training, it leads

to the common problem of GAN mode collapse, where all input images map to same output

image [8].
Cycle Consistency loss: To limit the infinite mappings of domain Y , cycle consistency loss is

used. The intuition behind this property is that if we translate, e.g. a sentence from English

to French, and then translate it back from French to English, we should arrive back at the

original sentence [29]. So, an image generated from an input can be reconstructed back to
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the input again such that x = F(G(x)), where F and G are generators and x is the input,

and thus it is able to map an image of target domain which is as close as possible to the

image of input domain. Combining this loss with adversarial loss yields our full objective.

Figure 3.1: (a) CycleGAN [3] model contains two mapping functions G : X → Y and F :
Y → X , and discriminators DY and DX . DY persuades G to translate X into outputs similar
in distribution in domain Y , and vice versa for DX and F . Two cycle consistency loss is used
to maintain the distribution of transforming X to Y and back to X so that no content loss
occurs: (b) forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x , and (c) backward
cycle-consistency loss: y → F(y)→ G(F(y))≈ y .

Reducing Model Oscillation: To prevent the model from changing drastically from

iteration to iteration, Shrivastava et al. [30] proposed a technique to feed the discrimina-

tors with a history of generated images, rather than just the ones produced by the latest

generative networks. To do this, a pool is kept to store the 50 most recently generated

images.

Network Architecture: The architecture of generative networks is adopted from John-

son et al. [16] which have shown admirable results for style transfer and super resolution

task. The network consists of two stride-2 convolutions, several residual blocks [] and two

fractionally strided convolutions with stride 1
2 . As our image resolution is 128× 128 so we

used 6 blocks of residual net. Similar to Johnson et al. [16] instance normalization [31] is

used.
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Figure 3.2: Generative Network of CycleGAN [3].

Figure 3.3: Discriminative Network of CycleGAN [3].

For the discriminator networks, shown in Fig 3.3, 70×70 PatchGANs [11], [32], [33]
is used, which aimed to classify if the 70 × 70 overlapping image patches are realistic or

fake. Patch-level discriminator has fewer parameters than a full-image discriminator, and

can be applied to arbitrarily-sized images.
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3.1.2 UNIT

We compare our work with UNIT [4] framework. Liu et al. [4] proposed this framework

based on shared latent assumption, where a pair of corresponding images in different do-

mains can be mapped to a same latent representation in a shared-latent space. The frame-

work combined a variational autoencoder(VAE) and generative adversarial network (GAN).

The adversarial training objective enforces the generator to transform corresponding images

in two domains, while the variational autoencoders(VAE) make correlations between trans-

lated images with input images in the respective domain.

Larsen et al. [34] proposes to combine Variational AutoEncoder (VAE) [28] with GAN [8]
to exploit both of their benefits, as GAN can generate sharp images but often miss some

modes while images produced by VAE [28] are blurry but have large variety. This method

is used in UNIT framework [4]. The VAE part regularize the encoder E by imposing a prior

of normal distribution (e.g. z ∼ N(0, 1)). Also, VAE-GAN [34] proposes to represent the

reconstruction loss of VAE in terms of the discriminator D.

A higher level representation of UNIT framework is shown in Fig 3.4. In fig 3.4 E1, E2

defines encoder, G1, G2 defines generator and D1, D2 defines the discriminative function.

Figure 3.4: (a) The authors [4] dictate a shared latent space assumption where a pair of
corresponding images (x1; x2) in two different domains X1 and X2 can be mapped to a same
latent code z in a shared-latent space Z . Two encoders E1 and E2 are used to map images
to latent codes. Also, two generative functions G1 and G2 maps latent codes to images. (b)
The author’s UNIT framework. E1E2G1 and G2 are represented using CNNs and implement
the shared-latent space assumption using a weight sharing constraint where the connection
weights of the last few layers in E1 and E2 are tied (illustrated using dashed lines) and the
connection weights of the first few layers in G1 and G2 are tied. Here, x̃1→1

1 and x̃2→2
2 are

self-reconstructed images and x̃1→2
1 and x̃2→1

2 are transformation of one domain to another.
Two discriminative networks D1 and D2 are used for the respective domains for evaluating
whether the translated images are realistic or not.

Network Architecture The network architecture used for the unsupervised image-to-

image translation experiments is given in Fig 3.5 and 3.6. 8 residual blocks is used in UNIT

[4] framework. Fig 3.5 shows the architecture of generator and 3.6 shows the architecture
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Figure 3.5: Generative Network of UNIT [4] framework.

Figure 3.6: Discriminative Network of UNIT [4] framework.

of discriminator.
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3.2 Using Spectral Normalization

One of the challenges in the training of generative adversarial networks [8] is the lack of

stability. Miyato et al. [22] proposed a novel weight normalization technique called spectral

normalization to stabilize the training of discriminator D. Spectral normalization normal-

izes the spectral norm of the weight matrix W such that it satisfies the Lipschitz constraint

σ(W ) = 1. The technique is computationally inexpensive and the implementation is simple.

The technique only requires Lipschitz constraint, one of the hyper-parameters of network

to be tuned. The technique improves the quality of generated images better than weight

normalization [35] and gradient penalty [36] used previously.
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Chapter 4

Results and Comparison

4.1 Evaluation

In this section, we discuss about the evaluation methods that we used for our research. We

used three different evaluation methods which are Fréchet Inception Distance, Stabilization

Evaluation and Human Evaluation. In the following three subsections, we will discuss about

this.

4.1.1 Evaluation metric

We chose the Fréchet Inception Distance (FID) [37] for quantitative evaluation. As FID score

measures the difference between the generated dataset and the target dataset, it has shown

more consistency with human evaluation. it calculates the Wasserstein-2 distance between

the translated image and the real world images from an intermediate layer of an Inception-

v3 network. Lower the FID score, the closer the distance between translated image and real

domain images. As our task is image-to-image translation where we want our output to

have the content of input cartoon images and the style of real-world images, we calculated

a weighted average between them, where we used 80% weight for target data and 20%

weight for input data. From Table 4.1 we can see that our work has shown the least FID

score compared to other state of the art models.

Table 4.1: Fid scores of ours & UNIT model.

Models Our Work UNIT
FID 48.4225 55.9214
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(a) CycleGAN model

(b) Ours

Figure 4.1: Here, FID scores for CycleGAN (a) and for our method (b) are shown from 20
epochs up to 200 epochs.

4.1.2 Evaluation of stabilization technique

By utilizing spectral normalization technique on discriminator network shown in Figure

4.1b, we started to gain lower FID score from the very initial of training compared to baseline

model, which is implemented based on CycleGAN [3]model. Spectral normalization is used

on discriminator network on baseline model which is shown in 4.1b. From 4.1b, the quality
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of transforming images doesn’t improve monotonically during training. For example, the

FID score of our work starts to drop at the 37th epoch. On the contrary, baseline model’s

FID score starts to rise after 125th epoch and it crosses the initial FID scores, whereas in

our work, the scores didn’t rise like the baseline model did. From this, we can clarify that

we achieved a more stabilized model and better scores. We can also clarify from Figure 4.1

that the stabilization technique also takes fewer training epochs to achieve better scores.

4.1.3 Human evaluation

We randomly selected 10 images from our cartoon-to-real world domain transformation and

evaluated them by creating a survey on the social media platform. More than 100 peoples

gave a scoring on each of the individual images, on the number of 5.0. The images are

shown in Fig 4.2 and the score for each image are shown in Table 4.2.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.2: 10 images taken for human evaluation. All the samples are the result of our
cartoon-to-real world domain transformation.
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Table 4.2: Average score of each individual images of Fig 4.2. The score is rated on 5.0.

Image No Score Image No Score
4.2a 3.028169014 4.2f 4.323943662
4.2b 3.436619718 4.2g 4.197183099
4.2c 2.971830986 4.2h 4.070422535
4.2d 3.802816901 4.2i 4.098591549
4.2e 3.957746479 4.2j 3.746478873

From the table we can conclude that, 90% of our images have more than 3.0 rating.

Our model have thus produced decent results for cartoon-to-real translation task.

The screenshot of our google form is shown in Fig 4.3.

Figure 4.3: Screenshot of our Google form on the evaluation of our model.
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4.2 Results of our work

(a) input (b) toon2real (c) UNIT

Figure 4.4: Detailed comparisons in terms of contrast and content preservation. (a) Input
images of cartoon scenes (a portion is amplified inside red bounding box for better obser-
vation). (b) Result of our toon2real: shows more contrast on content, compared to other
works. (c) Result of UNIT [4] which shows the lacking of content than (b).
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(a) input (b) toon2real (c) UNIT

Figure 4.5: Collective set I : more collective samples of toon2real in comparison with UNIT.



4.2. RESULTS OF OUR WORK 30

(a) input (b) toon2real (c) UNIT

Figure 4.6: Collective set I I : more collective samples of toon2real in comparison with UNIT.
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Chapter 5

Limitations and Future Work

5.1 Limitations

Despite achieving a better FID score than other techniques, this method still lacks in achiev-

ing a perfect image to image translation. On the following sub sections we will discuss more

about the limitations.

5.1.1 Presence of Realism

This technique fails to make a cartoon image realistic when there is nothing at all realistic

in the cartoon image. We know that any watery things such as sea doesn’t seem realistic

in cartoon images. In that case, the model will fail to generate any realistic image. This

happens because of geometric structure of the sea in realistic images. Cartoon images fail

to catch that.

5.1.2 Human Structure

One of the biggest drawback of this model is that it fails to translate cartoon human figure

into realistic images. From Figure 5.1 we can see the example of where the the model failed

to generate a realistic version of the human in input cartoon image.

5.1.3 Dataset

Another drawback is that to create a large enough dataset, we curated images from various

sources. However, the GAN technique loose some of its sharpness because of learning so

many different distributions of the image.



5.2. FUTURE WORKS 32

(a) Input (b) Our result

Figure 5.1: An unsuccessful case (b) of our method where it fails to translate the human
figure for the input image (a).

5.2 Future works

Our future plan is to lessen our current limitations by investigating more geometry and con-

tent aware model to improve the texture so that the gap with the photorealistic domain

decreases. In addition to FID score and human involved evaluation, we have plans to ar-

range perceptual evaluation processes to asses the correctness of your outcomes. These are

discussed in details in the following subsections.

5.2.1 Segmentationally Aware

To improve the score, we have plans to train the datasets semantically, which is instead of

training the entire images, we will train their segmented versions. Hence, the objects, e.g.

trees, from cartoon domain will be segmented and mapped to the similar objects (trees) in

the real domain like it done in [14,38].

5.2.2 Variational Discriminator Bottleneck

Consider the equation given in 2.1. Peng et al. [39] proposed a bottleneck loss added to 2.1

by which necessary amount of information is passed through discriminator network which

then allows the generator to improve on the most discerning differences between real and

fake samples. This achieved significant advantage in training and in generating images.

We believe that by incorporating VDB in our work we can improve our results and training

progress too.
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5.2.3 Dataset

As it is mentioned in 5.1.3, we will try to minimize the the variation in our dataset as much

as possible which will limit the learning distribution of GANs.
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